
UPMC Sorbonne Universités

Lip6

Big-GC: A new garbage collector for big data

Internship report, April 2014 - Sept 2014

Georgios Boumis
georgios.boumis@lip6.fr

Supervisor: Gaël Thomas
Referent: Julien Sopena

mailto:georgios.boumis@lip6.fr
mailto:gael.thomas@lip6.fr
mailto:julien.sopena@lip6.fr

Abstract

The rise of cloud computing has enabled governments and companies to store huge
data sets. Today, one of the major performance bottlenecks processing these data sets is
the garbage collector of managed runtime environments such as the Java virtual machine.
The garbage collector must now scan heaps of tens of gigabytes of memory, which causes
intolerable pauses to the user. A recent study that was conducted jointly with the University
of Neuchatel showed that database NoSQL Cassandra could introduce pauses of up to 6
minutes with a heap of a hundred gigabytes.

The aim of this internship is to propose and study a new garbage collection algorithm
that can support large memory loads. The algorithm starts from the principle that the
garbage collector can scan objects concurrently with the application if these objects are not
accessed by the application at the same time. The aim of the internship will be to find
an algorithm to separate the heap into two parts, one with the objects accessed by the
application , the other with non-accessed objects.

Developments will be made in the HotSpot Java Virtual Machine (JVM) in C++. It is
therefore requested the applicant to have an excellent level of programming and knowledge
in memory collection.

2 of 33

CONTENTS CONTENTS

Contents
1 Introduction 4

1.1 Algorithm . 4
1.2 Goals . 6
1.3 Accomplishments . 6
1.4 Organization of the report . 6

2 State of the art 8
2.1 Criteria . 8

2.1.1 Performance . 8
2.1.2 Responsiveness . 9

2.2 Non-moving collectors . 9
2.2.1 Fragmentation intolerant . 10
2.2.2 Fragmentation tolerant . 10

2.3 Moving collectors . 11
2.3.1 Pausing during compaction . 11
2.3.2 Concurrent during compaction . 12

2.4 Multicore garbage collectors . 14

3 Accomplishments and results 15
3.1 Double Map . 15

3.1.1 Why double map the heap . 16
3.1.2 How does double mapping work . 16
3.1.3 Something to consider . 17

3.2 Hot Page Queue . 17
3.2.1 Page protection mechanism . 17
3.2.2 First-In First-Out (FIFO) Queue . 18
3.2.3 Least Recently Used (LRU) list . 18

4 Study/Analysis of application locality 19

5 Difficulties 23

6 Future work 25

7 Conclusion 26

A DaCapo benchmark suite applications 27

Glossary 28

Acronyms 30

References 33

3 of 33

1 INTRODUCTION

Context
This internship takes place within the REGAL team1 of the Laboratoire d’informatique Paris 6
(LIP6)2 of Université Pierre et Marie Curie (UPMC)3. The aim of this internship is to propose and
study a new garbage collection algorithm that can support large memory loads. The supervisor
of this internship is Gaël Thomas and the referent is Julien Sopena. This internship finalizes the
second year of the Distributed Systems and Applications (SAR) Master’s degree.

1 Introduction
Garbage collector speeds up software development while increasing security and reliability.
Garbage collectors have been used into modern popular languages such as Java. However, they
may introduce pauses in the application’s execution as well as overhead, that reduces efficiency.

The Java programming language is used in large server applications. Such large server and
enterprise applications have enormous amount of live heap data in the 10s and 100s of gigabytes.
Throughput is important for these kind of applications but they also may have (soft real-time)
constraints that, if not met, are likely to annoy customers. An example of large real time system
is the analysis of large exchange data. In these systems that treat huge data, any kind of pause
or impact on performance can have many severe financial implications.

Managed runtime environments are supplied with huge amount of cheap computing resources
and memory capacity. Enterprise applications demand high responsiveness and scalability.
Garbage collection algorithms that pause application threads, are limiting the responsiveness
and the scalability of the application. As live sets and heap sizes continue to grow and the time
bounds continue to tighten, pauses become unacceptable.

Traditional “stop-the-world” garbage collectors, where the application is halted during the
garbage collection, create long pauses that affect the application’s responsiveness, so concurrent
collectors were proposed. Concurrent collectors run in parallel with the application and some-
times stop it for a short phase in the beginning or end of the collection, while on-the-fly collectors
stop one thread at a time.

Moreover, servers are required to operate continuously and remain highly responsive to fre-
quent client request. There is a need for concurrently garbage collection algorithms that provide
high throughput and high responsiveness for applications with very large live heap data sets.

1.1 Algorithm

garbage collector application

memory

cores

memory

... ...
cores

Figure 1: BigGC

1http://www.lip6.fr/recherche/team.php?id=740
2http://www.lip6.fr
3http://www.upmc.fr

4 of 33

mailto:gael.thomas@lip6.fr
mailto:julien.sopena@lip6.fr

Algorithm
Criteria

Type Throughput Responsiveness

pa
ra

lle
l

co
nc

ur
re

nt

co
m

pa
ct

in
g

ge
ne

ra
tio

na
l

in
cr

em
en

ta
l

re
al

-t
im

e

re
ad

ba
rr

ie
r

w
rit

e
ba

rr
ie

r

virtual memory
operations STW Phase Non-blocking

Compactifying[26] no yes yes yes no no no no no no spinlock,
semaphore

On-the-fly[7] no yes no no no no no no no no atomic opera-
tions

Garbage First[4] yes yes yes yes yes soft no yes- no roots scan,
final marking,
cleanup phase

CAS

Mostly concurrent
compaction[18]

˜ yes yes no yes no no no yes roots, move,
stack fix-up

CAS

The
Compressor[13]

yes yes yes no yes no no no yes page protection,
roots

no

Stopless[19] yes yes yes yes yes soft yes+cloning- yes no no lock-free
The Mapping
Collector[30]

yes yes yes yes no no no no yes fallback no synchronisa-
tion

Stack scanning[14] no yes ˜ no yes no yes- no no lock-free with
CAS

Hard Real-
Time[25]

yes yes no no yes hard no yes no no

Schism[22] no yes copying no no hard no wait-free no no lock-free evacu-
ation

C4[27] no yes yes yes yes no LVB- SVB yes and Quick
Release

no interlock

The Collie[12] no yes yes no no no LVB- yes- no no wait-free
NAPS[8] yes no yes yes no no no no no yes lock-free

Table 1: Comparison table. The different criteria that were used are presented. Green and yellow cells are considered positive points.
Brown and red cells are considered weak points or not answering the principal problem of the BigGC idea.The tilde (˜) sign means
possible with little modification. The cost of barriers are represented with a plus sign (+) when they have only some instructions that
do not have a significant impact on the application performance, with a double plus sign (++) if they are costly in a significant way in
application performance and finally with a minus sign (-) if they are filtered/optimized or wait-free

1.2 Goals 1 INTRODUCTION

BigGC is a new concurrent garbage collector, that partitions the hardware the garbage col-
lector accesses from the hardware the application does (Fig. 1). The goal is to try to eliminate
two major problems of concurrent garbage collectors:

1. the instrumentation of the code application, like memory barriers, that degrade the appli-
cations performance

2. the fact that the garbage collector and the application work on the same resources - the
heap - which leads to access congestion of the caches, the memory bus, etc.

To achieve partitioning of the heap resource, it replicates the heap in a way that the garbage
collector and the application have their own vision of the heap. Moreover, BigGC identifies the
hot/cold parts of the heap to optimize the collection.

The hot/cold algorithm determines which part of the heap is actively used by the application
(hot part) and which is not (cold part). Then the garbage collector can concurrently collect the
cold part without bothering the application. The hot part is much smaller than the cold, so
a quick stop-the-world collection is well suited for this part. The distinction of hot/cold parts
minimizes the need for synchronization between the garbage collector and the application.

1.2 Goals
The principal goal of this internship is to implement the new BigGC garbage collector algorithm.
The main principle of this goal is to split the heap in two zones:

• hot zone: accessed by the application

• cold zone: not-accessed by the application

This leads to two basic needs:

• different permission for the heap if it is the garbage collector or the application that accesses
the heap, which requiers to replicate the heap

• determine the hot/cold zones of the heap

1.3 Accomplishments
During the internship the aforementioned goals 1.2 were developed.

The heap replication uses a technique called double mapping. The double map technique
allows to replicate a memory region within the same application. The two different regions are
independent concerning the virtual memory system, but the changes made in one are visible to
the other.

Two techniques are implemented to determine the hot/cold zones of the heap. The first one
is naïve and uses a simple queue that treats memory of the application with FIFO semantics.
The second one uses the better adapted semantics of a LRU list. A Linux module is developed,
that piggybacks on the Linux kernel’s LRU list to get the necessary information.

1.4 Organization of the report
The report is organized in the following way:

Section 2 presents the state of the art study of concurrent garbage collectors.

6 of 33

1.4 Organization of the report 1 INTRODUCTION

Section 3 describes the work that was accomplished and the results of the work.

Section 4 is a study of application locality, of the DaCapo benchmark suite application,
that guided development.

Section 5 discusses major difficulties and how they were solved.

Section 6 proposes future work as well as future ideas and proposals for amelioration.

Finally, section 7 concludes on what this work contributes and what remains to do.

7 of 33

2 STATE OF THE ART

2 State of the art
In this section we study the existing art of concurrent garbage collectors. We go over a large
number of existing algorithms that try to solve different parts of the problems a concurrent
garbage collector algorithm confronts. The Table 1 shows in a compacted form the criteria that
were used and how they are associated with the existing art. First, we discuss our base criteria.
Later on in this section, follows a more detailed analysis of each algorithm.

2.1 Criteria
The criteria that are used, take into consideration two basic aspects of a garbage collector
algorithm, throughput and responsiveness. Throughput is the average number of operations
per time unit. The throughput criteria indicates if the application has a good performance.
Responsiveness is the worst response time for an operation. The responsiveness criteria indicate
if the application always gives its response in a reasonable time, from the user’s perspective.

2.1.1 Performance

Performance criteria that degrade the applications’ threads performance due to garbage collec-
tor’s activity include memory barriers and virtual memory operations.

Memory barrier is a type of instruction which causes a Central Processing Unit (CPU)
or compiler to enforce an ordering constraint on memory operations issued before and after
the barrier instruction. This typically means that operations issued prior to the barrier are
guaranteed to be performed before operations issued after the barrier.

Memory barriers are used because most modern CPUs employ performance optimizations
that can result in out-of-order execution. This reordering of memory operations normally goes
unnoticed within a single thread of execution, but can cause unpredictable behaviour in con-
current programs unless controlled. There are two types of memory barriers: read barriers and
write barriers.

Read barriers are little tasks the application threads execute when reading an address from
memory, that help resolve concurrency problems between the applications thread and the garbage
collector. The task can be as short as a reference fix-up [12, 27] or long as a relocating or
allocating an object [19]. Read barriers mark a used or a newly created objects correctly so that,
the collector does not consider valid objects as “garbage”, while avoiding costly synchronisation.
This is the case of a moving collector that copies concurrently an object and the mutator tries to
use it before all the fix-ups have taken place. In this case, a barrier would prevent the mutator
for accessing directly the reference, forcing it to perform the fix-up itself, or follow a forwarding
pointer before resuming its business logic.

Write barriers are little tasks the application threads execute when writing a new reference
in the heap, that help to make sure that updates during a collection do not get lost. As the
collector is concurrently gathering information from the object graph, the mutator can update
fields of already marked objects. In this case a write barrier would enforce the mutator to inform
the collector that there was a modification, and thus, the collector should take into consideration
the changes.

Read and write barriers affect the mutators’ minimum utilization, that is the time that the
mutator spends to do the collector’s work instead of the application’s work. This consumes
CPU cycles that could be used to make application progress. A memory barrier should not be
very long to execute or it can have a significant impact on the applications execution. If the
application is very memory intensive a barrier can rapidly become a bottleneck.

8 of 33

2.2 Non-moving collectors 2 STATE OF THE ART

Virtual memory operations is a standard way to operate on the virtual memory subsystem
of the underlying operating system. A feature of virtual memory is the ability to map file
in memory as well as its ability to read protect and write protect individual pages of process
memory. The virtual memory operations manipulate the file mappings and the page protection.
This means that the operating system can control access to different parts of the address space
for each process, and also means that a process can read and/or write protect an area of memory
when it wants to ensure that it won’t ever read or write to it again. The standard virtual
operations [1] we consider are:

Map: Map a virtual page to a physical page.

UnMap: Unmap a virtual page from its associated physical page.

ProtN: Protect a range of virtual pages from read and write access.

UnProt: Remove the protection from a virtual page.

TRAP: Perform a specified routine upon access to a protected virtual page.

DoubleMap: Map one physical page to two different virtual pages.

A garbage collector uses virtual memory operations to read or write protect the pages of the
application, so the application can not access these pages unless executing a trap. Forbid the
read/write access of pages to an application can be considered a form of barrier/synchronisation.

2.1.2 Responsiveness

Responsiveness criteria help the application to be the least impeded by the garbage collector
resulting in no wait times for the client. These criteria include stop-the-world phases and the
use of locks to achieve cooperation between the collector and the application’s threads.

Stop-the-world phases or garbage collectors, stop all the application threads to perform some
short synchronisation or to perform the whole collection respectively. The garbage collector
algorithm usually pauses the application to perform different operations that ensure correctness
and termination. Correctness means that the collector never collects reachable objects and that
it will eventually collect all garbage produced by the application. Termination means that a
collection cycle will not run eternally due to work introduced by the mutators. The work that
the collector perform during the pauses include roots scan, taking a snapshot-at-the-begining or
synchronising with the application when the collector’s state changes.

Coarser grained synchronisation using locks can effectively impact the responsiveness of the
application. When parallel-intensive applications should cooperate with the collector, the use of
locks can adversely impact the responsiveness and even the performance of the application.

2.2 Non-moving collectors
Non-moving collectors never relocate objects as part of the garbage collection. This avoids
the need to update the references of relocated objects, which usually requires some kind of
synchronisation. The drawback is that they can induce fragmentation of the heap. There two
types of non-moving collectors, those that try to eliminate fragmentation, and those that don’t.

9 of 33

2.2 Non-moving collectors 2 STATE OF THE ART

2.2.1 Fragmentation intolerant

On-the-fly[7] Garbage Collection is an on-the-fly garbage collector and its primary goal
is to guarantee that it will eventually collect every garbage, while keeping exclusion and syn-
chronisation constraints as weak as possible. It is based on an abstract tri-color algorithm that
operates on an objects’ graph.

To keep exclusion and synchronisation constraints as weak as possible, the algorithm demands
that the collector does not alter the objects’ graph in any way other than to append a garbage
node. The on-the-fly garbage collector algorithm uses atomic operations and Dijstra semaphores
for synchronisation.

The overhead on the mutator is negligible and the mutator’s activity does not impair the
collector from identifying and collecting garbage.

The stack scanning[14] algorithm develops methods for concurrent, incremental and lock-
free stack scanning garbage collectors. The algorithm tries to achieve simultaneous scanning of
the stack by the collector and the mutator while preserving lock-freedom, as well as handling
interaction between managed and unmanaged code.

The collector uses a return-barrier technique that is cleverly set up to be executed in rare
cases. This barrier makes the mutator perform some work on behalf of the garbage collector
if and only if the garbage collector has not performed it yet. To handle parameters passed by
reference, the collector uses also write barrier. Handshakes between the collector and the mutator
provide synchronisation.

The impact of the write barrier is insignificant, as it is employed only when the garbage
collector is operating concurrently on the same part of the stack as the mutator operates on.
This algorithm achieves high responsiveness to the microsecond level. It also provides support
for programs that employ fine-synchronization to avoid locks.

2.2.2 Fragmentation tolerant

The Mapping Collector[30] is a generational, parallel, concurrent (or stop-the-world), non-
moving, nearly single-phase compacting garbage collector. The Mapping Collector (MC) goal
is to achieve perfect compaction, without any object moving, while preserving order between
objects before and after the compacting phase.

The MC employs virtual memory operations, like unmapping and remmaping, as primary
technique to achieve compaction, as it exploits the widely-observed statistical property that
unreachable objects tend to cluster together and form contiguous dead regions in the heap. The
MC remaps the free space into a contiguous region in a newly allocated area in virtual memory.
As the MC does not access live objects, it can run concurrently with the application without the
need for any synchronisation.

If the collector fails to reclaim a sufficient amount of free space, then it falls back to perfect
compaction using a state-of-the-art compacting algorithm (cf. The Compressor[13]).

The MC increases throughput and scalability while drastically reducing pause times (up to
70% compared to The Compressor[13]), while adding a space overhead below 6%. The MC
also speeds up application execution time (up to 5.9). Finally, the fall-back rate to the perfect
compacting algorithm is about 6.5%.

Schism[22] is a concurrent and real-time garbage collector, fragmentation tolerant and guar-
antees time-and-space worst-case bounds. The main goal of Schism is to beat memory fragmen-
tation for real-time systems.

10 of 33

2.3 Moving collectors 2 STATE OF THE ART

The Schism algorithm allocates object by fragments of 64 bytes, as it is the size of most
objects, and for bigger objects, it uses a linked list of fragments. That way Schism copes with
external fragmentation when running in small heaps. The fragments are always of fixed size
and never move thus achieving constant-time heap access and constant space-bounds for internal
fragmentation. Arrays are treated as large objects and are represented by a spine, containing
pointers to a set of array fragments.

Schism uses wait-free barriers for reading and writing the array spines. The allocation of
spines can also be made lock-free.

Schism runs 1.6 to 2.5 times slower than the reference implementation of HotSpot, but it
offers appreciable scalability on modern multi-cores. Schism provides different predictability
levels, hence making it a hard real-time garbage collection solution.

2.3 Moving collectors
Moving collectors are a type of collector that moves objects during the garbage collection phase.
The move phase can be done either by copying objects or by using some virtual memory opera-
tions without copying. The main interest of moving collectors is to compact the heap and avoid
fragmentation. The compaction leads to better locality and to more efficient use of the memory
address space. Also it makes it possible to use a very efficient algorithm for allocation that only
has to update the pointer to the end of the last allocated object to allocate a new one. There are
two types of moving collectors, those that relocate objects by pausing the mutators and those
that perform the relocation concurrently with the mutators.

2.3.1 Pausing during compaction

Garbage First[4] ’s goals are high throughput as well as soft real-time constraints. Garbage
First has high probability of not violating the soft real-time constraints, because it collects the
most interesting (efficient) part of the heap. The most interesting parts of the heap is based
on an accurate model of the cost of collecting equal sized heap regions, so the algorithm can
conclude which regions can be collected within the given pause time limit.

Garbage First employs stop-the-world phases, evacuation pauses and write barriers. The
stop-the-world phases perform the roots scanning, the final marking, the evacuation and the
clean-up phase. The evacuation pauses, that allow compaction, are optimised to be performed in
incremental stop-the-world phases in parallel, using work-stealing techniques. Garbage First also
uses a write barrier to track concurrent updates. The write barrier is used to keep up-to-date
sets that indicates all locations of live objects. The write barrier is optimised using filtering
techniques that can filter up to 81% of pointer writes. If the write creates a pointer in the same
heap region, then it needs not be recorded in a set. At last, Garbage First can switch between
fully and partially young modes for better efficiency. A generational execution starts in fully-
young mode. After a marking pass is complete, Garbage First switches to partially-young mode,
to collect attractive non-young regions identified by the marking. If the efficiency of the partial
collections declines to the efficiency of fully-young collections, it switches back to fully-young
mode.

Garbage First offers greatly reduces pause times that can be tuned by the user. The user
soft real-time goals are violated less than 5% of the time. Moreover, it scales quite well up to 7
CPUs, while having a space overhead that is negligible.

In mostly concurrent compaction[18] an incremental, concurrent compaction algorithm is
studied, with main goal to reduce the pause time created by compaction.

11 of 33

2.3 Moving collectors 2 STATE OF THE ART

The algorithm uses many techniques such as virtual memory page protection techniques,
mutator traps, heap sections and fix-up phases. A fix-up phase updates all references to the
moved objects after compaction. If an application thread accesses a protected page, it executes
a trap routine, which fixes that page and then unprotects it, before continuing to execute. The
algorithm also gathers heap section information, during the sweep phase, that allows to select
the most promising heap sections for compaction. The compaction is entirely performed in a
stop-the-world manner, and it is based on existing moving algorithm.

The pause time is bounded. The cost of page protection varied from 0.01 to 0.13 ms per each
page access violation that introduces a significant overhead. The average overhead for fix-up is
200ms which is also quite significant. The MMU very high up to 90%.

2.3.2 Concurrent during compaction

The Compactifying[26] algorithm compacts and relocates cells concurrently with the mu-
tator.

The algorithm uses “spin-locks” and Dijkstra semaphores[6] for synchronisation. The spin-
lock avoid manipulations of the same variable in the same time, between the garbage collector
and the mutator. The spin-lock can be considered as a read barrier.

The overhead on the mutator is negligible to the extent that the mutator never needs to wait
the garbage collector other than short periods of time. The mutator’s activity does not impair
the collector from identifying and collecting garbage.

C4[27] is a a multi-generational, continuously concurrent, always compacting garbage collec-
tor. The main goal is to eliminate any pauses during compaction. C4 supports simultaneous
generational concurrency using multiple independently running instances to simultaneously col-
lect all generations. The simultaneous multi-generation operation, limits the cross-generational
synchronisation.

The C4 uses read barriers and write barrier as well as virtual memory operations. The read
barrier imposes a set of invariants on every object reference value as it is loaded from memory.
The invariants provide safety for mark and access. Using a self-healing4 technique, it avoids
repeated triggers on the same loaded reference, dramatically reducing the dynamic occurrence
of read barriers, leading to efficient and predictable fast path test execution. The write barrier
only keeps track of young-to-old generation references.

C4 uses interlocks to solve synchronisation between the two simultaneous collections. An
interlock, briefly halts one of the collectors, to provide safe access, at page granularity.

The C4 virtual memory operations are based on page mappings and unmappings. To achieve
high performance the C4 implements a new virtual memory subsystem for the operation system.
The property of this new subsystem is the ability to change the protection of pages without
causing a Translation Lookaside Buffer (TLB) invalidation.

The virtual memory subsystem can sustain virtual mapping manipulation rate providing
high throughput. It has very good scalability properties as well as two-orders-of-magnitude
improvement in sustainable worst case response times, compared to HotSpot’s ParallelGC.

The Collie[12] is a fully concurrent compacting collector, that focuses on individual object
relocation. The collector uses compaction as the primary mean of reclaiming unused memory.
The Collie uses referrer sets to identify the precise set of all object references that point to a
object’s location.

4Self-healing means that it heals source memory location by atomically storing a copy of the reference back to
the source location.

12 of 33

2.3 Moving collectors 2 STATE OF THE ART

The Collie uses read barriers, write barriers, virtual memory operations as well as transac-
tional memory techniques. The read barrier intercepts all reference loads from the heap, helping
the concurrent tracer and the concurrent compactor. Aborting read barriers reduce the costs of
the read barriers and they use transactional memory techniques.

The Collie uses virtual memory operations to create a mirrored to-space, so it can per-
form zero-copy, non compacting, transplantation, on a page granularity. The transplantation is
achieved in a wait-free, bounded constant time, using a cheap read barrier.

The write barrier intercepts all stores of references to the heap, identifying whether an object
should be marked as “non-individually transplantable”.

The MMU beats all metrics compared to Pauseless [2] . The Collie improves also the overall
throughput but the focus was not on improving throughput. The throughput improvement is a
side effect of the lower read barrier triggering rates and the reduced mutator work on triggered
barriers. The throughput is 1.09 to 1.15 better than the Pauseless [2].

The Compressor[13] is a concurrent, parallel and incremental garbage collection algorithm,
which compacts the entire heap to a single condensed area.

The Compressor uses virtual memory operations as well as markbit and offset vectors to
achieve full compaction. The collector handles the compaction while the mutators are running
concurrently, needing only a stop-the-world phase to update the roots and protect the pages that
require update. Using virtual memory operations it also avoids the use of forwarding pointers
by trapping the mutators. The move and the references fix-up is executed in parallel with no
synchronisation, when the mutator threads get trapped.

The Compressor improves locality and cache consciousness of the collector because the moving
phase uses only the two markbit vectors and do not touch the heap. It reduces pause times
significantly, allowing acceptable runs on large heaps, requiring only a single heap pass while
achieving full compaction. f The Compressor achieves full compaction, having only a space
overhead of ˜4%.

Stopless[19] is a concurrent, real-time, parallel, compacting garbage collector. The principal
goal is to have extremely short pause time and have lock-freedom. Stopless provides (soft) real-
time with high responsiveness, preserving lock-freedom, supporting atomic operations, controlling
fragmentation by compaction on stock hardware. It performs object copying with a temporary
wide object, employing also a forwarding pointer. A wide object contains for each field the actual
location of the field: original location, temporary location or final location.

Stopless uses read barriers and write barriers for synchronisation. To access wide objects,
Stopless employs a synchronisation method that uses read barriers. A novel code cloning
technique drastically reduces the barrier’s effect, up to a factor of 2. The code cloning technique
is a compiler assisted technique, that has two copies of the code, one for the fast path and one
for the slow path. The read barrier’s primary role is to inform where the up-to-date version of
the associated field of an object is.

Stopless uses write barriers to make sure that updates do not get lost between the different
copies of an object.

Lock-freedom is provided with a lock-free virtual mark-stack, a lock-free work-stealing mech-
anism and a termination condition that does not block any mutator threads.

The responsiveness is two orders of magnitude, a factor of 100, better than previously pub-
lished systems, resulting in less than tens of microseconds. The collector offers an acceptable
scalability and throughput.

13 of 33

2.4 Multicore garbage collectors 2 STATE OF THE ART

2.4 Multicore garbage collectors
NAPS[8] is a stop-the-world, generational, copying and compacting garbage collection algo-
rithm based on the Parallel Scavenge, with focus on scalability on NUMA machines.

NUMA-aware Parallel Scavenge (NAPS) greatly impacts scalability by distributing live ob-
jects in a balanced way between the NUMA nodes and completely avoids locking during the
parallel phase of the collection. It also simplifying the synchronisation protocol of the garbage
collector’s threads. The NAPS algorithm employs lock-free structures for the collector task
queue. It uses a lazy garbage collector parking technique that completely removes the monitor’s
lock.

NAPS scales well with the number of cores and performance continues to increase up to 48
cores while improves application time by up to 28%. The improvement on the application time
is a side effect of the memory balancing of the algorithm. NAPS reduces individual pause times
by up to 2.8 times improving the responsiveness of the application.

14 of 33

3 ACCOMPLISHMENTS AND RESULTS

3 Accomplishments and results
A double map technique that allows to replicate a memory region within the same application
constitutes the first part of my work. This technique is implanted in the HotSpot JVM to
replicate the heap.

Then two techniques are implemented to determine the hot/cold zones of the heap. The first
one is naïve and uses a simple FIFO queue. This implementation is actually implemented in the
HotSpot JVM code.

The second one uses a LRU list. A Linux module is developed, that piggybacks on the
Linux kernel’s swapper LRU list to get the necessary information. The Linux module nearly
completed, meaning that is functionnal in a proof-of-concept way, and thus the integration with
the HotSpot’s JVM is not there yet.

Finally, a study of applications’ locality was conducted to better understand how to identify
the hot/cold zones. The study is based on the FIFO queue implementation.

3.1 Double Map
As noted in the the Abstract and the 1 Introduction section, the aim is to find and implement
an algorithm to separate the heap into two parts, one with frequently accessed objects, named
the hot space, and the other with non-frequently accessed objects, named the cold space.

virtual memory

physical memory

mapping 1 mapping 2

file

Figure 2: Visualization of the double mapping. Here the mapping 1 and the mapping 2 are
pointing into the same physical memory, but are two distinct virtual memory regions, that do
not overlap.

The hot space must be accessible by the application while the cold one should be protected
from any access from the application. Thus, the garbage collector can concurrently perform the
collection work in the cold space. The problem that arises from the protection of the cold space
is that the garbage collector must be able to access this space, while the application should not.
So, a solution is needed that will provide different protections for the same physical memory
range.

A technique, hereafter named double mapping, was used to achieve the desired result. Double
map means to associate a physical memory address range to two locations in the virtual memory
of the applications. It is like having two distinct views of the same object, or having two proxies
for the same object (Fig. 2). An example of double mapping is when two distinct processes
map a file, with mmap(2), in their virtual address space with the flag MAP_SHARED. Updates to
the mapping are visible to other processes that map this file, and are carried through to the

15 of 33

3.1 Double Map 3 ACCOMPLISHMENTS AND RESULTS

app gc

virtual memory

Figure 3: Visualization of the double mapping used by the garbage collector.

app gc

protect

ho
t

cold ho
t

cold

Figure 4: Visualization of the protection mechanism that leverages the use of the double mapping.

underlying file, the back-store. This way the processes can access the same physical memory
from two different virtual memory addresses.

3.1.1 Why double map the heap

The resource that the garbage collector operates on is the heap of the application and to have
different protections for the heap, the garbage collector has to use the double map technique on
the heap, from within the same process.

The goal is to have two separate virtual memory ranges, that can be independently used
from the application and the garbage collector, as seen in Figure 3. This way the heap can be
double mapped and give the first mapped address to the application, and keep the second one
for the garbage collector. That way the garbage collector can protect (with mprotect(2)) the
part of the first address range and thus prevent the application from accessing that part of the
heap, while the garbage collector will access the same (physical) memory region via the second
mapped virtual address during a concurrent garbage collector, as shown in Figure 4.

3.1.2 How does double mapping work

Double mapping a file into memory is straightforward: (1) Create a file, (2) truncate the file
to the desired size, (3) map the file descriptor, with the shared flag (MAP_SHARED), into memory
twice. The result is two shared virtual mappings pointing to the same file. The shared mappings
are placed into different virtual address regions and do not overlap (Fig. 2). These two regions
can now be manipulated separately with mprotect(2), hence achieving the desired effect of

16 of 33

3.2 Hot Page Queue 3 ACCOMPLISHMENTS AND RESULTS

separating the heap the application uses, from the heap the garbage collector performs collection
on. The file used as the back-store can be unlink(2)ed immediately after the open(2) call and
close(2)d immediately after the double mmap(2)call.

3.1.3 Something to consider

The mmap(2)ed files have as back-store a file to disk. To have the changes performed to the
mappings visible to every mapping with the MAP_SHARED flag, the system needs to propagate the
changes back to disk. Thus, as we double map the heap, propagating the changes back to disk
degrades application performance.

To overcome this limitation, the file that serves as a back-store to the heap can be created
in a tmpfs (cf. [15]) mount point. This means that the back-store of the file is in memory and
thus there is no performance impact5.

The mmap(2)ed files are considered as page cache by Linux. Since tmpfs lives completely in
the page cache and on swap, all tmpfs pages currently in memory, will also show up as cached.
Pages in the page cache are managed differently from anonymous pages. Linux, if under memory
pressure, first tries to swap out page cache pages before the anonymous ones. The potential
impact to the application is that its heap memory has more chances to be swapped out sooner
than other processes’ memory that is anonymous, and hence degrade performance. A possible
solution to the swap out problem is to use mlock(2) or madvice(2) system calls.

3.2 Hot Page Queue
3.2.1 Page protection mechanism

The space of the heap is divided in two virtual spaces, the hot space and the cold space. The hot
space should contain pages that are frequently used and pages that are in constant use by the
application. The cold space contains the rest of the pages. Cold pages are promoted to the hot
space when they are accessed. At this time, the coldest page from the hot space moves to the
cold space.

The page protection mechanism protects the cold pages, using the mprotect(2) system call,
so that the application can not access them without provoking a segment violation error. This
error will provoke a SIGSEGV signal to be sent to the JVM. This signal is handled by a signal
handler that traps the thread accessing the cold page and promotes the page to the hot space
and/or informs the garbage collection system.

The hot/cold space architecture liberates the garbage collection system of any need of explicit
synchronization with the application; thus the garbage collector can concurrently operate on the
cold space. If the application ever tries to touch a protected page then the trap will cooperate
with the garbage collector. Cooperating either means informing the garbage collector of the fact
that a mutator tries to access a cold page, or either to perform some garbage collection work on
the behalf of the garbage collection by the mutator.

The signal handler is quite an expensive operation and thus the application should not access
very often the cold space. To amortise and minimize the cost of the signal handler some techniques
are explored. Like the FIFO queue or the LRU queue that are discussed in the next sections.

5The use of a tmpfs mount point can have other side effects. As the contents of the tmpfs are occupying real
memory, if the system is under memory pressure, this can lead to strange system behaviour, if the system can
not free enough memory.

17 of 33

3.2 Hot Page Queue 3 ACCOMPLISHMENTS AND RESULTS

Commands Results
register register a pid clients/ the directory containing the

clients that are registered
unregister unregister a pid

update demand an update of the
LRU list

clients/<pid> the file containing the last
LRU list that was updated
due to an update request

enabled enable/disable the module

Table 2: Description of Linux’s module sysfs interface, in the /sys/module/<module>/state
directory.

3.2.2 FIFO Queue

To separate the heap in hot and cold spaces, there is a need to find the most recently used pages
of the application. The first naïve and simplistic approach is to have a fixed size FIFO queue
containing the hot pages. Each time the page protection mechanism is engaged, this means that
application tries to access a cold page. The mechanism appends the cold page in the hot page
queue, hence the page is promoted to the hot space. If the hot page queue is full, then the first
page is removed from the queue and protected, so the application can not access it.

In order to avoid contention on a global FIFO queue each thread has its own, independent,
FIFO queue. This approach is reasonable because it takes into consideration the application’s
locality principle; the threads access more often their own data and rarely global data. Moreover,
a page that was recently accessed by a thread is more likely to be accessed again in the near
future by the same thread. So, the size of the FIFO queue expresses the number of pages in each
thread’s queue.

3.2.3 LRU list

A more clever and advanced approach is to use an LRU list of fixed size to keep track of the
hot pages. The Linux operating system already has a LRU list that is used by the swapper.
So a clever way to manage the hot space is to piggyback on the Linux kernel to extract this
information.

A Linux module that extracts this information was developed. The module presents an
interface representation in the sysfs (cf. [17]) file system that an userspace application can use
(Table 2). The module offers on demand support to the application for LRU information.

When the garbage collector begins a collection cycle, it asks the module to update the LRU
list. Then it reads this list and it concludes the hot/cold spaces, protects the corresponding
spaces and starts a stop-the-world collection of the hot space. After the stop-the-world collection
it collects the cold space concurrently with the application.

control group (cgroup) A very promising feature of the Linux kernel is the cgroup memory
resource controller [16]. The controller allows to control different resources for a group of appli-
cations. The most interesting feature however is the fact that the applications in a cgroup have
their own LRU list. The separate LRU list facilitates the development of the Linux module, as it
has to browse a smaller list and do less checks for the owner of the page, as all pages are coming
from one application only.

The cgroup is also promising for a future shared garbage collector implementation (cf. 6).

18 of 33

4 STUDY/ANALYSIS OF APPLICATION LOCALITY

4 Study/Analysis of application locality
The DaCapo benchmark suite[3] (cf Glossary and A) is intended as a tool for Java
benchmarking by the programming language, memory management and computer architecture
communities. It consists of a set of open source, real world applications with non-trivial memory
loads.

The DaCapo benchmark suite was used to study the impact of the hot page queue (cf. 3.2)
in application time as well as to conclude on the size of the queue that does no degrades a lot
application performance. The results below use the FIFO queue only, because the Linux module
(cf. 3.2.3) is not yet completed.

All the tests were conducted in a 48-core AMD Magny-Cours NUMA machine with 8 memory
nodes and a total memory size of 32GB.

The page protection mechanism (cf. 3.2.1) was modified to track how many times it was
engaged for different sizes of the hot page queue. Figure 5 presents the results. The benchmark’s
applications were run with 32GB of heap. The average page faults are application depended. The
average number of threads per application is about 60, the average page faults at the 1000 page
threshold is 85349 faults and the average variance at 1000 page threshold is σ = 1233754.83640.

The curve is logarithmic and we perceive that a larger threshold of for the queue, results in
fewer faults. This means that there are more hot pages available at the same time and thus there
is no need to provoke a page fault.

Starting from 1000 pages per thread, the impact of the queue on the application performance
stabilizes. This shows us that the application locality principle can effectively taken into con-
sideration for the hot page queue algorithm and that it will not seriously degrade application
performance. The 1000 page threshold was chosen as the best size for the hot page queue.

The other test that we conducted was to see how many times a page goes in the hot page
queue. The page protection mechanism (cf. 3.2.1) was modified to track how many times each
page gets in the queue. Figure 6 presents the results. The benchmark’s applications were run
with different heap sizes, but with a fixed page threshold of 1000 pages.

The results show that the 100 hottest pages get in average 4058 times in the queue (σ =
36456.473). This number depends on the size of the heap and the way the application behaves.
The average times all pages get in the hot page queue for all application is around 2.5.

Figure 7 presents a comparative graph for the DaCapo benchmark suite applications of the
hotness of the 100/500/1000 hottest pages. The hotness metric represents the number of times
a page has got in the queue. The 100 hottest pages are much hotter than the rest of the pages.
This provides meaningful information that the

LRU algorithm can take advantage of.

19 of 33

4 STUDY/ANALYSIS OF APPLICATION LOCALITY

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 500 1000 5000 10000

A
ve

ra
ge

 p
ag

e
fa

ul
ts

Page Threshold

Fault-Threshold Data - all-32g

avrora
batik

fop
h2

jython
luindex

lusearch
pmd

tomcat
tradebeans

xalan

Figure 5: DaCapo benchmark suite run with different size thresholds of hot page queue (cf. 3.2).
The execution of each benchmark application was done with a heap size of 32GB. From the 1000
page threshold per thread, the average number of times a page gets in and out of the queue
stabilizes.

20 of 33

4 STUDY/ANALYSIS OF APPLICATION LOCALITY

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 4 8 12 16 20 24 32

P
ag

e
H

ot
ne

ss

Heap Size

Hotness-Heap Size Data - all-hotness-1000

avrora
batik

fop
h2

jython
luindex

lusearch
pmd

tomcat
tradebeans

xalan

Figure 6: This graph shows the number of times the 100 most hot pages get in the hot page
queue with a threshold of 1000 pages (cf. 3.2). The page hotness depends on the application
and on the size of the heap.

21 of 33

4 STUDY/ANALYSIS OF APPLICATION LOCALITY

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

avrora
batik fop h2 jython

luindex
lusearch

pmd tomcat
tradebeans

xalan

A
ve

ra
ge

 p
ag

e
ho

tn
es

s

Hotness-32g-1000

100
500

1000
all

Figure 7: This graph shows the number of times the 100 most hot pages get in the hot page
queue with a threshold of 1000 pages (cf. 3.2), for a heap of 32GB. It is clear that the 100 hottest
pages are much hotter than the rest of the pages.

22 of 33

5 DIFFICULTIES

5 Difficulties
The double mapping technique is rarely used this way. The principal use of double mapping is
to share memory between processes, as an Inter-Process Communication (IPC) mechanism. The
IPC mechanism is often limited to a size of some megabytes, which does not respond to the needs
of a big data garbage collector, like BigGC. The need of a robust mechanism was apparent and so,
the most promising mechanism already existing in Linux, was the mmap(2) system call. mmap(2)
is robust, fast (and lazy) and has already the support to share memory between processes as well
as to map a file in memory.

Figure 8: Visualization of the alignment choices of the heap in JVM. The upper rectangle
designates the memory and the green rectangle designates the heap allocation. The alignment
of the heap start is not one that JVM likes. The result is to attempt to reserve a little more
memory from the same starting address and add a little offset inside that region that is correctly
aligned for the needs of the JVM.

The biggest problem was to implant the double mapping code in the HotSpot JVM code base.
This was quite a difficult task, because the way the memory reservation works in the HotSpot.
The process is not very clear and complicated. The biggest problem was the strong requirements
in terms of alignment of the heap region the JVM imposes. This results in many attempts of
memory reservation by the JVM, trying to achieve the correct alignment (Fig. 8). When the
allocated memory region for the heap is not aligned to specific boundaries, the JVM tries to
fix the situation by calculating an offset. Then it allocates again the same amount of memory
plus the calculated offset and asks for a mmap(2)ed allocation from the same starting address as
the last one, using the MAP_FIXED flag. The solution was to keep track of the allocations and
munmap(2) the previous allocations.

Another problematic feature of the JVM is the way it handles memory allocation as well as
tracking it, with ReservedSpaces. ReservedSpaces is a cluster of classes that track the regions
of memory allocated for different purposes by the JVM. One subclass of the ReservedSpace,
the ReservedHeapSpace is of particular interest because it describes the range of the heap.
However, there are different types of heaps in the JVM. There is a heap for the Just-In-Time
(JIT) compiler, one for the JAVA application etc. A way to indicate to the mmap(2) call that a
double map should take place was needed. This step took a considerable part of the internship
time.

Once this obstacle tackled down, there was the Page Protection Mechanism (cf. 3.2.1) that
complicated even more the already not evident code of the heap double map. The Page Protection
Mechanism uses a SIGSEGV signal handler to trap the threads that try to access a protected page.
The handling code, should find if the page that is accessed belongs to the heap region. Since the

23 of 33

5 DIFFICULTIES

application, the garbage collector threads and the Virtual Machine (VM) threads access the heap
the signal handler is called by different threads, in different moments, like while the application
is running or when the garbage collector is running, the implementation that works in all the
above cases was not evident.

24 of 33

6 FUTURE WORK

6 Future work
With the map technique coupled with the hot space management the garbage collector can be
shared between many JVM in the same machine. All the cold spaces can be collected concurrently
while the applications are running. The garbage collection can be done in a clever way that does
not invalidate the caches and thus does not destroy the applications’ locality. Especially in a
NUMA machine these details can have an enormous gain in the application performance.

25 of 33

7 CONCLUSION

7 Conclusion
BigGC actually starts to shape into a modern concurrent garbage collector. The first milestones
are now put in place. Starting from the initial objectives the replication of the heap as well as
the identification of the hot/cold zones, both are now accomplished. What remains to be done
is to:

• complete the Linux module

• modify HotSpot JVM to communicate with the module

• modify the actual garbage collector algorithm in HotSpot so that it performs garbage
collection on the replicated heap

• advance in novel directions, that no garbage collector has ever been

26 of 33

A DACAPO BENCHMARK SUITE APPLICATIONS

A DaCapo benchmark suite applications
avrora simulates a number of programs run on a grid of AVR microcontrollers
batik produces a number of Scalable Vector Graphics (SVG) images based on the unit

tests in Apache Batik
fop takes an XSL-FO file, parses it and formats it, generating a PDF file.
h2 executes a JDBCbench-like in-memory benchmark, executing a number of trans-

actions against a model of a banking application, replacing the hsqldb bench-
mark

jython inteprets a the pybench Python benchmark
luindex Uses lucene to indexes a set of documents; the works of Shakespeare and the

King James Bible
lusearch Uses lucene to do a text search of keywords over a corpus of data comprising

the works of Shakespeare and the King James Bible
pmd analyzes a set of Java classes for a range of source code problems

tomcat runs a set of queries against a Tomcat server retrieving and verifying the resulting
webpages

tradebeans runs the daytrader benchmark via a Jave Beans to a GERONIMO
backend with an in memory h2 as the underlying database

xalan transforms XML documents into HTML

27 of 33

Glossary Glossary

Glossary
CAS In computer science, compare-and-swap (CAS) is an atomic instruction used in multi-

threading to achieve synchronization. It compares the contents of a memory location to a
given value and, only if they are the same, modifies the contents of that memory location
to a given new value. This is done as a single atomic operation. The atomicity guarantees
that the new value is calculated based on up-to-date information; if the value had been up-
dated by another thread in the meantime, the write would fail. The result of the operation
must indicate whether it performed the substitution; this can be done either with a simple
Boolean response (this variant is often called compare-and-set), or by returning the value
read from the memory location (not the value written to it).[31]. 28

double map to map the same physical memory of an application in two different virtual ad-
dresses, using the mmap(2)or shmget(2), shmat(2) calls. 6, 9, 15–17, 23

garbage collector In computer science, garbage collection (GC) is a form of automatic memory
management. The garbage collector, or just collector, attempts to reclaim garbage, or
memory occupied by objects that are no longer in use by the program. Garbage collection
was invented by John McCarthy around 1959 to solve problems in Lisp.
Garbage collection is often portrayed as the opposite of manual memory management,
which requires the programmer to specify which objects to deallocate and return to the
memory system. However, many systems use a combination of approaches, including other
techniques such as stack allocation and region inference. Like other memory management
techniques, garbage collection may take a significant proportion of total processing time in
a program and can thus have significant influence on performance.
Resources other than memory, such as network sockets, database handles, user interaction
windows, and file and device descriptors, are not typically handled by garbage collection.
Methods used to manage such resources, particularly destructors, may suffice to manage
memory as well, leaving no need for GC. Some GC systems allow such other resources to
be associated with a region of memory that, when collected, causes the other resource to
be reclaimed; this is called finalization. Finalization may introduce complications limiting
its usability, such as intolerable latency between disuse and reclaim of especially limited
resources, or a lack of control over which thread performs the work of reclaiming. [32] 2,
4, 6, 8–10, 12, 15–18, 23–26, 28

heap in programming, it refers to a common pool of memory that is available to the program.
The management of the heap is either done by the applications themselves, allocating and
deallocating memory as required, or by the operating system or other system program [5].
15

map to map a virtual page to a physical page, usually using the mmap(2)system call. 9

memory barrier A memory barrier is a type of instruction which causes a CPU or compiler
to enforce an ordering constraint on memory operations issued before and after the barrier
instruction. This typically means that operations issued prior to the barrier are guaranteed
to be performed before operations issued after the barrier. (cf. CAS) [33]. 6, 8

MMU the time a mutator spends to do the garbage collector’s work instead of the application’s
work.. 8, 12, 13

28 of 33

Glossary Glossary

prot to disassociate a virtual page from its associated physical page, using the mprotect(2)
system call. 9

sysfs sysfs is a virtual file system provided by Linux. sysfs provides a set of virtual files by
exporting information about various kernel subsystems, hardware devices and associated
device drivers from the kernel’s device model to user space. In addition to providing
information about various devices and kernel subsystems, exported virtual files are also
used for their configuring. sysfs is similar to the sysctl mechanism found in BSD systems,
but implemented as a file system instead of a separate mechanism.[34]. 18

trap to disassociate a virtual page from its associated physical page. 9, 23

unmap to disassociate a virtual page from its associated physical page, usually using the
munmap(2) system call. 9

unprot to disassociate a virtual page from its associated physical page, using the mprotect(2)
system call. 9

29 of 33

Acronyms Acronyms

Acronyms
cgroup control group. 18

CPU Central Processing Unit. 8, 28

FIFO First-In First-Out. 3, 6, 15, 18, 19

IPC Inter-Process Communication. 23

JIT Just-In-Time. 23

JVM Java Virtual Machine. 2, 15, 17, 23, 25, 26

LRU Least Recently Used. 3, 6, 15, 17–19

NAPS NUMA-aware Parallel Scavenge. 5, 14

TLB Translation Lookaside Buffer. 12

VM Virtual Machine. 24

30 of 33

REFERENCES REFERENCES

References
[1] Andrew W. Appel and Kai Li. Virtual memory primitives for user programs. In Proceedings

of the Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS IV, pages 96–107, New York, NY, USA, 1991. ACM.

[2] Cliff Click, Gil Tene, and Michael Wolf. The pauseless gc algorithm. In Proceedings of the
1st ACM/USENIX International Conference on Virtual Execution Environments, VEE ’05,
pages 46–56, New York, NY, USA, 2005. ACM.

[3] DaCapo. the DaCapo benchmark suite. http://www.dacapobench.org/, Feb 2012.

[4] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. Garbage-first garbage
collection. In Proceedings of the 4th International Symposium on Memory Management,
ISMM ’04, pages 37–48, New York, NY, USA, 2004. ACM.

[5] The Free Dictionary. Dynamic memory allocation. http://encyclopedia2.
thefreedictionary.com/heap.

[6] Edsger W. Dijkstra. The structure of the “the”-multiprogramming system. In
Proceedings of the First ACM Symposium on Operating System Principles, SOSP ’67, pages
10.1–10.6, New York, NY, USA, 1967. ACM.

[7] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens.
On-the-fly garbage collection: An exercise in cooperation. Commun. ACM, 21(11):966–975,
November 1978.

[8] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. A study of the scalability
of stop-the-world garbage collectors on multicores. In Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, pages 229–240, New York, NY, USA, 2013. ACM.

[9] Antony L. Hosking. Portable, mostly-concurrent, mostly-copying garbage collection for
multi-processors. In Proceedings of the 5th International Symposium on Memory Manage-
ment, ISMM ’06, pages 40–51, New York, NY, USA, 2006. ACM.

[10] Nikolay Igotti. Double mapping of memory regions on unix. https://blogs.oracle.com/
nike/entry/double_mapping_of_memory_regions, Jul 2007.

[11] Balaji Iyengar, Edward Gehringer, Michael Wolf, and Karthikeyan Manivannan. Scalable
concurrent and parallel mark. In Proceedings of the 2012 International Symposium on
Memory Management, ISMM ’12, pages 61–72, New York, NY, USA, 2012. ACM.

[12] Balaji Iyengar, Gil Tene, Michael Wolf, and Edward Gehringer. The collie: A wait-free
compacting collector. In Proceedings of the 2012 International Symposium on Memory
Management, ISMM ’12, pages 85–96, New York, NY, USA, 2012. ACM.

[13] Haim Kermany and Erez Petrank. The compressor: Concurrent, incremental, and parallel
compaction. In Proceedings of the 2006 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’06, pages 354–363, New York, NY, USA, 2006.
ACM.

[14] Gabriel Kliot, Erez Petrank, and Bjarne Steensgaard. A lock-free, concurrent, and incremen-
tal stack scanning mechanism for garbage collectors. SIGOPS Oper. Syst. Rev., 43(3):3–13,
July 2009.

31 of 33

http://www.dacapobench.org/
http://encyclopedia2.thefreedictionary.com/heap
http://encyclopedia2.thefreedictionary.com/heap
https://blogs.oracle.com/nike/entry/double_mapping_of_memory_regions
https://blogs.oracle.com/nike/entry/double_mapping_of_memory_regions

REFERENCES REFERENCES

[15] Linux. tmpfs. https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt,
March 2010.

[16] Linux. Documentation/cgroups/memory.txt. https://www.kernel.org/doc/
Documentation/cgroups/memory.txt, March 2011.

[17] Linux. sysfs - the filesystem for exporting kernel objects. https://www.kernel.org/doc/
Documentation/filesystems/sysfs.txt, August 2011.

[18] Yoav Ossia, Ori Ben-Yitzhak, and Marc Segal. Mostly concurrent compaction for mark-
sweep gc. In Proceedings of the 4th International Symposium on Memory Management,
ISMM ’04, pages 25–36, New York, NY, USA, 2004. ACM.

[19] Filip Pizlo, Daniel Frampton, Erez Petrank, and Bjarne Steensgaard. Stopless: A real-time
garbage collector for multiprocessors. In Proceedings of the 6th International Symposium on
Memory Management, ISMM ’07, pages 159–172, New York, NY, USA, 2007. ACM.

[20] Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. A study of concurrent real-time garbage
collectors. In Proceedings of the 2008 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’08, pages 33–44, New York, NY, USA, 2008. ACM.

[21] Filip Pizlo and Jan Vitek. Memory management for real-time java: State of the art. In
Proceedings of the 2008 11th IEEE Symposium on Object Oriented Real-Time Distributed
Computing, ISORC ’08, pages 248–254, Washington, DC, USA, 2008. IEEE Computer So-
ciety.

[22] Filip Pizlo, Lukasz Ziarek, Petr Maj, Antony L. Hosking, Ethan Blanton, and Jan Vitek.
Schism: Fragmentation-tolerant real-time garbage collection. SIGPLAN Not., 45(6):146–
159, June 2010.

[23] Ivan Seelnon. When I’m Atatata. https://www.youtube.com/watch?v=PMO2gjopqqk, Jul
2012.

[24] Fridtjof Siebert. Limits of parallel marking garbage collection. In Proceedings of the 7th
International Symposium on Memory Management, ISMM ’08, pages 21–29, New York, NY,
USA, 2008. ACM.

[25] Fridtjof Siebert. Concurrent, parallel, real-time garbage-collection. In Proceedings of the
2010 International Symposium on Memory Management, ISMM ’10, pages 11–20, New York,
NY, USA, 2010. ACM.

[26] Guy L. Steele, Jr. Multiprocessing compactifying garbage collection. Commun. ACM,
18(9):495–508, September 1975.

[27] Gil Tene, Balaji Iyengar, and Michael Wolf. C4: The continuously concurrent compacting
collector. In Proceedings of the International Symposium on Memory Management, ISMM
’11, pages 79–88, New York, NY, USA, 2011. ACM.

[28] Linus Torvalds. double mmap calls. https://groups.google.com/forum/#!topic/comp.
os.linux.development.system/Prx7ExCzsv4, Jan 2001.

[29] Martin T. Vechev and David F. Bacon. Write barrier elision for concurrent garbage collec-
tors. In Proceedings of the 4th International Symposium on Memory Management, ISMM
’04, pages 13–24, New York, NY, USA, 2004. ACM.

32 of 33

https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
https://www.kernel.org/doc/Documentation/cgroups/memory.txt
https://www.kernel.org/doc/Documentation/cgroups/memory.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.youtube.com/watch?v=PMO2gjopqqk
https://groups.google.com/forum/#!topic/comp.os.linux.development.system/Prx7ExCzsv4
https://groups.google.com/forum/#!topic/comp.os.linux.development.system/Prx7ExCzsv4

REFERENCES REFERENCES

[30] Michal Wegiel and Chandra Krintz. The mapping collector: Virtual memory support for
generational, parallel, and concurrent compaction. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XIII, pages 91–102, New York, NY, USA, 2008. ACM.

[31] Wikipedia. Compare-and-swap. https://en.wikipedia.org/wiki/Compare-and-swap.

[32] Wikipedia. Garbage collection. https://en.wikipedia.org/wiki/Garbage_collection_
(computer_science).

[33] Wikipedia. Memory barrier. https://en.wikipedia.org/wiki/Memory_barrier.

[34] Wikipedia. sysfs. https://en.wikipedia.org/wiki/Sysfs.

33 of 33

https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Memory_barrier
https://en.wikipedia.org/wiki/Sysfs

	Introduction
	Algorithm
	Goals
	Accomplishments
	Organization of the report

	State of the art
	Criteria
	Performance
	Responsiveness

	Non-moving collectors
	Fragmentation intolerant
	Fragmentation tolerant

	Moving collectors
	Pausing during compaction
	Concurrent during compaction

	Multicore garbage collectors

	Accomplishments and results
	Double Map
	Why double map the heap
	How does double mapping work
	Something to consider

	Hot Page Queue
	Page protection mechanism
	acr:fifo Queue
	acr:lru list

	Study/Analysis of application locality
	Difficulties
	Future work
	Conclusion
	DaCapo benchmark suite applications
	Glossary
	Acronyms
	References

